Birjemin

随遇而安|时光不语,静等花开

View My GitHub Profile

目录:

在Redis中使用Pipelining加速查询

Request/Response protocols and RTT

Redis是一个client-server模式的TCP服务,也被称为Request/Response协议的实现。 这意味着通常一个请求的完成是遵循下面两个步骤:

  • Client发送一个操作命令给Server,从TCP的套接字Socket中读取Server的响应值,通常来说这是一种阻塞的方式
  • Server执行操作命令,然后将响应值返回给Client

举个例子🌰

Client: INCR X
Server: 1
Client: INCR X
Server: 2
Client: INCR X
Server: 3
Client: INCR X
Server: 4

Clients和Servers是通过网络进行连接。这就意味着网络连接可能会很快(比如回环网络,即本机网络),也可能很慢(比如两个主机之间存在多跳网络)。不管网络怎么样,一个数据包从Client到Server,然后相应值又从Server返回Client都需要一定的时间。

这个时间被称为RTT(Round Trip Time)。当一个Client需要执行多个连续请求(比如添加许多个元素到一个list中,或者清掉Redis中许多个键值对),那么RTT是怎样影响到性能的呢?这个也是很方便去计算的。比如如果RTT的时间为250ms(假设互联网连接速度非常慢),即使Server可以每秒处理100k个请求,那么最多也只能接受每秒4个请求。

如果是回环网络,RTT将会特别的短(比如作者的127.0.0.1,RTT的响应时间为44ms),但是对于执行连续多次写操作时,也是一笔不小的消耗。

其实我们有其他办法来降低这种场景的消耗,开心不?惊喜不?

Redis Pipelining

在一个Request/Response方式的服务中有一个特性:即使Client没有收到之前的响应值,也可以继续发送新的请求。这种特性意味着我们可以不需要等待Server的响应,可以率先发送许多操作命令给Server,然后在一次性读取Server的所有响应值。

这种方式被称为Pipelining技术,该技术近几十年来被广泛的使用。比如多POP3协议的实现就支持这个特性,大大的提升了从server端下载新的邮件的速度。

Redis在很早的时候就支持该项技术,所以不管你运行的是什么版本,你都可以使用pipelining技术,比如这里有一个使用 netcat 工具的🌰:

$ (printf "PING\r\nPING\r\nPING\r\n"; sleep 1) | nc localhost 6379
+PONG
+PONG
+PONG

现在我们不需要为每一次请求付出RTT的消耗了,而是一次性发送三个操作命令。为了便于直观的理解,还是拿之前的🌰说明,使用pipelining技术该🌰的实现顺序如下:

Client: INCR X
Client: INCR X
Client: INCR X
Client: INCR X
Server: 1
Server: 2
Server: 3
Server: 4

划重点(敲黑板):当client使用pipelining发送操作命令时,server端将强制使用内存来排列响应结果。所以在使用pipelining发送大量的操作命令的时候,最好确定一个合理的命令条数,一批一批的发送给Server端,比如发送10k个操作命令,读取响应结果,再发送10k个操作命令,以此类推…虽然说耗时近乎相同,但是额外的内存消耗将是这10k操作命令的排列响应结果所需的最大值。(为防止内存耗尽,选择一个合理的值)

It’s not just a matter of RTT

Pipelining不是减少因为 RTT 造成消耗的唯一方式,但是它确实帮助你极大的提升每秒的执行命令数量。事实的真相是:从访问相应的数据结构并且生成答复结果的角度来看,不使用pipelining确实代价很低;但是从套接字socket I/O的角度来看,恰恰相反。因为这涉及到了read()write()调用,需要从用户态切换到内核态。这种上下文切换会特别损耗时间的。

一旦使用了pipelining技术,很多操作命令将会从同一个read()调用中执行读操作,大量的答复结果将会被分发到同一个write()调用中执行写操作。基于此,随着管道的长度增加,每秒执行的查询数量最开始几乎呈直线型增加,直到不使用pipelining技术的基准的10倍,如下图: 图

Some real world code example

不翻译,基本上就是说使用了pipelining提升了5倍性能。

Pipelining VS Scripting

Redis Scripting(2.6+版本可用),通过使用在Server端完成大量工作的脚本Scripting,可以更加高效的解决大量pipelining用例。使用脚本Scripting的最大好处就是在读和写的时候消耗更少的性能,使得像读、写、计算这样的操作更加快速。(当client需要写操作之前获取读操作的响应结果时,pepelining就显得相形见拙。) 有时候,应用可能需要在使用pipelining时,发送 EVAL 或者 EVALSHA 命令,这是可行的,并且Redis明确支持这么这种SCRIPT LOAD命令。(它保证可可以调用 EVALSHA 而不会有失败的风险)。

Appendix: Why are busy loops slow even on the loopback interface?

读完全文,你可能还会感到疑问:为什么如下的Redis测试基准 benchmark 会执行这么慢,甚至在Client和Server在一个物理机上也是如此:

FOR-ONE-SECOND:
    Redis.SET("foo","bar")
END

毕竟Redis进程和测试基准benchmark在相同的机器上运行,并且这是没有任何实际的延迟和真实的网络参与,不就是消息通过内存从一个地方拷贝到另一个地方么? 原因是进程在操作系统中并不是一直运行。真实的情景是系统内核调度,调度到进程运行,它才会运行。比如测试基准benchmark被允许运行,从Redis Server中读取响应内容(与最后一次执行的命令相关),并且写了一个新的命令。这时命令将在回环网络的套接字中,但是为了被Redis Server读取,系统内核需要调度Redis Server进程(当前正在系统中挂起),周而复始。所以由于系统内核调度的机制,就算是在回环网络中,仍然会涉及到网络延迟。 简言之,在网络服务器中衡量性能时,使用回环网络测试并不是一个明智的方式。应该避免使用此种方式来测试基准。

思考

换一种测试方式

参考

  1. https://redis.io/topics/pipelining